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Summary - Methyl magnesium chloride, vinyl magnesium chloride and acetylides were found to add to 4-O- 
triisopropylphenylsulphonyl (TPS) uridine and thymidine derivatives at the 6-position leading to 6-substituted-3,6-dihydro- 
4-0-TPS pyrimidine nucleosides. Reaction with phenyl magnesium chloride resulted in addition at both the 6- and the 4- 
positions. 

Nucleoside and nucleotide derivatives exhibit a wide range of biological effects, most notably antiviral and 

anticancer activities. Among the large number of nucleoside analogs prepared as potential agents against viral diseases 

and cancers, 6-C-substituted pyrimidine nucleosides have attracted relatively scant attention,’ which may be due to their 

limited synthetic availability. Approaches to B-C-substituted pyrimidine nucleosides include the glycosylation of 6- 

substituted pyrimidines,* photochemical methods? addition of C-nucleophiles to 5-bromo uridines4 or cyclouridineq5 and 

lithiation of appropriately 5’substituted uridine derivatives followed by treatment with electrophiles.6 These methods are 

limited in scope and some suffer from low yields. 

OTPS 

a 1 R1=OTE3DMS, R&H 

2 R’=H, R2=CH3 

b C 

l=gue 1. 

We have recently shown7 that t-butyldimethylsilyl (TBDMS) protected 4-0-triisopropylphenylsulfonyl (TPS) 

uridine 1 and thymidine 2 react with malonate type nucleophiles selectively at the 4position to give 4-C-substituted 

pyrimidine nucleosides 6 (see Fig 1). Likewise, treatment with N- or 0-nucleophiles results in attack at the 4position 

leading to 4-N-cytidine- and 4-0-uridine (thymidine) analogs, respectively.8 We now wish to report the addition of 
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organometallic reagents to 1 and 2 resulting unexpectedly in the formation of 6-substituted derivatives b. Compounds of 

type b react with N- and 0-nucleophiles to give the 6substituted cytidine and uridine analogs c. 

When the 4-0-TPS uridine derivative 1 was treated with MeMgCl in THF a lower moving spot on TLC was 

formed after -30 min at 0°C. After work up and chromatography on SiOa (ethedhexane gradient) a product could be 

isolated in 53% yield. Surprisingly this compound still contained the TPS moiety and was converted to a slower moving 

product on treatment with EtsNH. On the basis of ‘H-NMR shifts and decoupling experiments this product was assigned 

structure 2 (see table, entry 1). It is a single stereoisomer and exists as the 4,5-double bond isomer due to the hydrogen 

bond formation between the 3-NH and the S=O group as has been found for related compounds.’ Similarly, 1 was 

converted to the 6-vinyl compound 3 on treatment with vinyl magnesium chloride (entry 2). But, reaction of the thymidine 

derivative 2 with MeMgCl yielded the two isomeric compounds 5 and fi (entry 3). The reaction of 1 with phenyl 

magnesium chloride proved to be an exception: it lead to the formation of both the 6-phenyl adduct Z and the 4-phenyl 

pyrimidine S (entry 4). 

Figure 2. 

In order to examine the reactivity of adducts 9 and 4 and to further prove their structures, both compounds were 

allowed to react with nucleophiles: 3 was converted to the 6-methyl-5,6-dihydro uridine U with tetrabutylammonium 
hydroxide in THF; 4 yielded the 6-vinyl-5,6-dihyro cytidine derivative 12 on treatment with anhydrous NH3 (see Fig. 2). 

Subsequently the addition of the organometallic reagent and treatment of the resulting product with a nucleophile was 

carried out in a one pot procedure. Reaction of 1 with sodium phenyl acetylide and subsequent treatment of the crude 
reaction mixture with MeOHIKaCOs gave 9 (entry 5). Treatment of 1 with potassium TMS-acetylide followed by Et2NH 

produced J.Q in good yield (entry 6). 

A few other C-nucleophiles were also examined. Treatment of 1 with the lithium salts of t-butyl acetate or 

nitromethane led only to the formation of (TBDMS)s-uridine. Reaction of 1 with methyl lithium or lithium dimethyl cuprate 

resulted in a complex mixture of products. 

Overall, we have shown that unlike malonate type nucleophiles, Grignard reagents add to 4-0-TPS pyrimidine 

nucleosides preferentially at the 6position leading to intermediates which can be easily transformed in a single reaction 

procedure to 4,6-substituted dihydropyrimidines. Thus, this methodology provides easy access to a variety of 

IsubstitutedQ,6_dihydrouridine (thymidine) and cytidine analogs. Such 5,6dihydropyrimidine nucleosides are interesting 

compounds from both the biochemical and structural point of view. They occur in t-RNA,’ are implicated in the 

catabolism of pyrimidine bases (dihydroorotic acid) and they are the products of radiation damage of DNA.” 5,6- 

Dihydrouridine and cytidine have also been studied as cytidine deaminase inhibitors.” 
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Table: Addition of Organometallic Reagents to 4-0-TPS Pyrimidine Nucleosides 

Entry 
starting 
Material Reaction Conditions Product(&) Yield (%)‘I 

OTPS OTPS 

1 
TBDMS 

CH@IgCl / THF 

CH3 YTPS 

2 TBDMSO OTBDMS fib.dgCl /= 

OTPS 

3 TBDMS CH$QCl / TI-I.F 

TBDMSb 

4 (61%) 

OTPS I 

HN CH3 

0 “x Jw 

Isomer A 5 (47%) 

“; 
W3 

Isomer B 6 (24%) 

OTPS 
I 7” 

1 PhMgCl / THF 7 (37%) 

Ph 

Ye 

0 
I I 

1 
1. Ph-- /NaH/THF 

AT 
9 (61%) 

2. MeOH / Kfi 

yEI2 
Y ‘Ph 

N’ 

6 1 1. TM-- /KH/THF AX 10 

0 

(80%) 

2. Et$JI-I / ether I % 
‘TMS 
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(quiJ=6.6,lH), 1.61-1.95 and 2.02-2.11 (2m,2H2), 1.17-1.27 (m,dMe), 0.86-0.89 (m,2tBu), 0.02-0.07 (m,4Me). 

8: 7.21 (s,2H), 6.13 (dxd,Jl=6.O,J2=8.7,Hl’), 5.67 (s,NH), 4.30 (m,lH), 4.04 (qui,J=6.9,2H), 3.83 (qua,J=6,3,Me6), 3.77 
(m,lH), 3.60 (m,2H5’), 2.92 (qui,J=B.B,iH), 1.76-I 86 and 1.95-2.16 (2m,2H2’), 1.17-1.28 (m,-8Me), 0.85-0.90 (m,2tBu), 0.03- 
0.05 (m,4Me). 

1: 7.09-7.32 (m,-7H), 6.18 (s,NH), 5.47 (d,J=4.5,Hl’), 5.23 (d,J=6.3,H6), 4.50 (dxd,Jl=2.4,J2=6.O,H5), 4.32 (m,lH), 4.08 
(m,lH), 3.96 (qui,J=6.6,2H), 3.84 (m,lH), 3.46-3.57 (m,2H5’), 2.91 (qui,J=g.G,lH), 1.26, 1.20, 1 .I 1 (3d,J=6,6,6Me), 0.80-0.89 
(m,3tBu), 0.05-0.12 (m,GMe). 
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system,J=lS.g,A-part 2.63,split into d,J=l.5,B-part 2.76,split into d,J=6.5,2H5), 0.95, 0.91, 0.82 (3s,3tBu), -0.13-0.26 
(m,GMe). 

1Q: (500 MHz):594 (s,Hl’), 4.89 (dxd,Jl=l.8,52=5.8,H6), 4.19-4.24 (m,2H), 3.97(dxd,J1=2.O,J2=11.6,H5’), 3.87 
(dxt,Jl=8.4,J2=2.O,H4’), 3.80 (sext,J=7,lH), 3.74 (dxd,Jl=2,J2=11.6,H5’), 3.58 (sext,J=6,7,lH), 3.39 (sext,J=7.3,lH), 3.29 
(sext,J=7.6, 1 H), 2.58 (AB-system,J=l4.8,A-part 2.46,split into d,J=5.8,8-part 2.70,split into d,J=l.8,2H5), 1 .I 9-l .25 
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(d,J&6,Me6), 0.87-0.9 (m,3tBu), 0.05-0.09 (m,6 Me). 

12: 5.74 (dxdxd,J1=4.8,9=10.5,J3=15.3,1H), 5.55 (d,J&3,Hl’), 5.17,5.13 (2m,2H), 4.65 (NH2), 4.18 (m,H2’), 3.97405 
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